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Abstract The benefits of mathematical-related skills are well documented in the eco-
nomics and education literature. Even in spite of such evidence, proficiency levels
among US high school students remain persistently low. This is especially true for the
State of Nevada. As a result, the Clark County School District (CCSD) made available
to students a computer-aided math tutorial prior to taking the High School Proficiency
Exam (HSPE) in mathematics. As such, we utilize a novel dataset and explore the
impact of computer-aided learning on mathematics proficiency rates for 10th and 11th
graders in the CCSD. Our results provide some evidence of increased proficiency in
mathematics related to tutorial participation. This is especially true for minority stu-
dents. However, causal claims are limited due to the inability to rule out a zero lower
bound on the estimated average treatment effects.

Keywords Academic achievement · Computer-aided education · Mathematical
proficiency · Minimum biased estimator · Partial identification · Tutoring
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1 Introduction

The benefits of mathematical skills in school-age children are widely documented in
the economics and education literature (Murnane et al. 1995; Grogger 1996; Heckman
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2006; Clements and Sarama 2011; Claessens and Engel 2013; Duncan and Magnuson
2013). However, mathematics proficiency levels among US high school students still
remain low. In 2005, 2009, and 2013, only 23, 26, and 26% of US high school seniors
were proficient in mathematics, respectively (Kena et al. 2015). On an international
scale, US high school students (15-year-olds) currently rank 35 out of 64 countries in
mathematics (OECD 2014).

At the state level, Nevada is one of the worst-performing states in the nation
(Annie E. Casey Foundation 2016). In the largest school district within the state, the
Clark County School District (CCSD), only 46% of 10th graders, on average, were
deemed proficient in mathematics over the time frame spanning 2005–2009 (O’Brien
et al. 2011).1 As a way to help students prepare for the state-mandated High School
Proficiency Exam (HSPE) in mathematics, the CCSD made available to students a
computer-aided math tutorial prior to taking the exam in the 2006/2007 academic
year. As such, this paper, using a novel dataset, explores the impact of computer-aided
tutorials on proficiency levels in high school mathematics.

Much of the existing research focuses on computer-based tutorials as effective
instructional methods in the classroom during school hours. The findings of these
studies are mixed. Beal et al. (2007) use a controlled evaluation of an online tutoring
system for high school math. The study finds that online-tutored students improved
on the posttests but the impact was only limited to skills taught in the online system.
Control group students showed no improvements. Barrow et al. (2009) use a random-
ized experiment to assess the impact of classroom software designed to help students
with pre-algebra and algebra. The study finds that students assigned to computer-
aided education score 0.17 standard deviations above students assigned to traditional
classrooms on follow-up math tests.

While the aforementioned studies use locally administered tests to assess the impact
of computer-aided education, other studies have investigated the impact on standard-
ized tests scores. This is the case for Campuzano et al. (2009) where teachers in the
same school were randomly assigned to use or not use a computer-assisted learning
program. They find that students whowere assigned to computer-aided classrooms did
not show significant improvements in standardized test scores over the control group.

A few studies have used the meta-analysis approach to summarize the impacts of
computer-aided learning in the classroom environment. Cheung and Slavin (2013)
provide a meta-analysis of studies on the impact of technology in the classroom on
mathematics achievements for K-12 students. They find that the use of technology
in the classroom has a positive but modest effect compared to traditional methods.
They also find that among the three types of educational technology applications,
computer-aided instruction had the largest impact. Steenbergen-Hu andCooper (2013)
analyze 26 reports on intelligent tutoring systems spanning 1997 to 2010 and find that
intelligent tutoring systems had at worse no negative effects on performance and even
slightly positive. Additionally, when compared to face-to-face tutoring, the impact
of computer-based tutoring had small to modest impacts. Kulik and Fletcher (2016)

1 Using district data for the 2009/2010 school year, O’Brien et al. (2011) find that a 49.6%math proficiency
rate for 10th graders in Clark County lags behind three comparable peer districts: Broward County (73.0%),
Houston ISD (68.0%), and Miami-Dade County (73.0%).
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provide a recent meta-analysis of 50 studies on the impact of intelligent computer
tutoring systems in the classroom on students’ test scores. They find that the median
effect among the 50 studies was to raise test scores by 0.66 standard deviations over
traditional methods. However, the results were mixed among the studies with some
finding very small effects. Their meta-analysis also revealed that the magnitude of
the effects depended other factors such as whether the improvements were measured
using standardized or locally administered tests, the nature of the control treatments,
and the adequacy of program implementation.

Even fewer studies have investigated the effectiveness of computer-assisted tutorials
that are used outside the classroom environment. This is an important aspect as such
programs can be used as a complement for in-class learning in low-income areaswhere
classroom technologymay be lacking and the quality of the classroom instructionmay
fall short. A rare contribution on this question is Lai et al. (2015) who investigate the
impact of computer-aided learning programs held out of regular classroom hours
using a randomized experiment in Beijing, China. The authors find that the program
improved students’ standardized math scores by 0.15 standard deviations. The study
also found that the program had the biggest impact on students with less-educated
parents.

Given this prior literature, our motivation is twofold. First, there is very limited
research exploring the impact that these tutorial systems have on math proficiency
when viewed as complements outside of the classroom. Second, the prevailing results
in the literature are quite mixed in terms of the benefits provided by computer-aided
technology. As such, we contribute to the literature by focusing on 10th and 11th
graders over the 2006/2007 school year in the CCSD and explore the impact of the
Succeed inMath!® (SCIM) computer-aided tutorial on mathematics proficiency rates,
as measured by performance on the HSPE in mathematics, when participation in the
tutorial is complementary to conventional, in-class instruction. To mitigate the bias
stemming from self-selection into the tutorial without access to valid exclusion restric-
tions given limitations of the data, we employ nonparametric bounding methods of
Kreider et al. (2012) and a minimum biased (MB) treatment effect estimator proposed
by Millimet and Tchernis (2013) to evaluate the causal effect of participation in the
tutorial program.

Our results are noteworthy and provide some evidence that participation in
computer-aidedmath tutorials, outside of school hours, increases the likelihood that the
average high school student passes as proficient in mathematics. However, our ability
to make definitive causal claims is limited since we cannot rule out a zero lower bound
on the estimated average treatment effects. With that said, if we assume the average
treatment effect (ATE) is given by the upper bound, then the impact on the average
high school student in the CCSD would be to increase overall proficiency rates in our
sample from 52 to 54%. For minorities the results are even larger. If every minority
student in the sample were to participate in the math tutorial, and again assuming the
upper bound to be the ATE, the mathematics proficiency rate for minority students in
the sample would increase from 34 to 41%. If every male and female in the sample
were to participate in the tutorial, the proficiency rates would increase from 55 to 58%
and from 48 to 54% for males and females, respectively.
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The remainder of the paper is organized as follows. Section 2 briefly describes the
SCIM tutorial. Section 3 describes the dataset used in the analysis. Section 4 presents
the two estimators utilized. Section 5 discusses the results. Finally, Sect. 6 concludes.

2 The Succeed in Math!® tutorial program

The SCIM software combines testing and tutoring services into one program that iden-
tifies a student’s weaknesses in math and then creates a customized tutoring plan for
that student. Furthermore, the software is designed to bring together teacher, student,
and parent in the remediation process.2

The student begins by taking a short multiple-choice test that covers a gamut of
topics as defined by the assessment standards set forth by the State of Nevada. The
questions on the test can be categorized under four different content strands (numbers
and operations, algebra and functions, geometry and measurement, and data analysis).
Each strand can be further broken down into more specific concentrations. After the
pretest, the program identifies those areas that the student needs to focus on, and a
study plan is created from the program’s library of content modules. If after the pretest
a student is deemed “at grade level” in all content strands related to state proficiency
standards, then no personalized tutorial program will be generated, and that student
will be unable to proceed with the tutorial.

Conditional on having areas that need improvement, the student can then access
the content modules and study at a pace to his or her own liking. A quiz is assigned
after the completion of each module. If the student fails to pass a particular quiz, the
program reassesses the student’s abilities and introduces lower level content. As the
student works through and masters this content, the program guides the individual
back through the higher-level content until command of the topic is achieved. Upon
completion of all modules, a posttest is assigned to measure improvement.3

3 Data

The dataset used in the analysis was provided by the CCSD. The dataset contains High
School Proficiency Exam (HSPE) scores in mathematics for every student who took
the exam in the school district over the 2006/2007 academic year. The HSPE score
served a dual role at that time. First, it served as one of three exit-type subject exams
that students must pass in order to successfully graduate high school in Nevada. If
students do not pass as proficient on the HSPE in mathematics, they can still receive
a certificate of attendance, but not a certified high school diploma. Second, as of the
2003/2004 academic year, the results for the HSPE in mathematics could be used to
satisfy the upper-grade testing requirement set forth inNoChildLeft Behind (NCLB).4

2 See http://www.succeedinmath.org/.
3 Unfortunately, we do not have scores for either the tutorial pre- or posttest. Note, these pre- and posttest
scores from the tutorial are not the HSPE scores (our outcome variable of interest).
4 The institutional settings of NCLB in Nevada have evolved over the years. Nevada submitted an initial
plan called “All Children Can Succeed” in June 2002 (Nevada Department of Education 2002). At the
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Ourmain outcome of interest, then, is a binary indicator for whether or not a student
scores as proficient on the HSPE inmathematics. The examwas offeredmultiple times
over the school year, with 96% of students in the sample taking the exam in March
2007. Since students can repeat the exam multiple times over the school year, we
use the exam score that corresponds to the student’s first attempt conditional on that
first attempt not being classified as a “retest” exam score.5 In addition to HSPE math
scores, the dataset also contains information on whether each student participated in
the SCIM tutorial program prior to taking the HSPE.

A limited set of student characteristics are also provided in the dataset. In particular,
there is information on minority status (black or hispanic), gender, a binary indicator
for English proficiency, a binary indicator for refugee status, and a binary indicator if
the student was classified as gifted and talented. Unfortunately, there is no information
provided on household-, parent-, and/or teacher-level characteristics. However, the
refugee status indicator is picking up some information on the household since it is
capturing whether or not a student is an English language learner. Meaning, a student
can be classified as proficient in English yet speak some other language outside of
school in the home. Nonetheless, the dataset is not ideal since we know some of these
omitted factors matter in determining math (and reading) proficiency and are arguably
correlated with participation in the tutorial program (Todd and Wolpin 2003, 2007).
Our choice of estimators is guided by these data challenges.

Lastly, we drop students from the sample who dropped out of high school or were
classified as special needs. Additionally, there were a group of students who selected
into the tutorial, yet passed the tutorial pretest given at the onset of the program.
Because these students passed the tutorial pretest, they were asked not to continue
with the computer-aided tutorial since they were deemed already proficient. Further,
because this group was neither strictly in the control nor treatment group, we drop
these individuals from the final sample. Once we condition the dataset as described
above, we are left with a sample of 15,360 10th grade students and 859 11th grade
students for a total sample size of 16,219 students.

Table 1 provides detailed summary statistics for the full sample, as well as for the
tutorial and non-tutorial participant subsamples. In terms of race, the tutorial partic-
ipants appear very similar relative to non-tutorial participants. The one exception is
for hispanics, where there are statistically fewer hispanics, proportionally, in the non-
tutorial group relative to the tutorial group. Not surprisingly, then, there are also fewer,

Footnote 4 continued
onset, Nevada relied on the Terra Nova exam scores to define proficiency across various subjects, which
was already in use for the statewide testing program. However, Nevada later implemented revised methods
relying more on criterion-referenced exams to determine proficiency levels, hence the use of HSPE scores
in mathematics (and other subjects) as a means of satisfying the upper-grade testing requirement in NCLB
(Nevada Legislative Council Bureau 2005).
5 We focus on the first attempt to keep the identification as clean as possible. In particular, we are concerned
that with some students having taken the exammultiple times over a short period, outcomes can be impacted
if learning has occurred with respect to material on the HSPE, the testing environment, etc. (see Matton
et al. 2011). We further condition the exam scores on the first attempt not being a “retest” exam score. We
chose not to include these “retest” students because it was unclear as to when they actually retested and
what the environment was like in which they retested. However, we again conduct the analysis including
these students, and the results are qualitatively similar.
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in a proportional sense, English language learners among tutorial participants relative
to non-tutorial participants.Aswell, a smaller proportion of females andgifted/talented
individuals participated in the tutorial relative to non-participants. Lastly, there is a
statistically significant difference in the proportion of 11th graders relative to 10th
graders who participated in the tutorial. See Table 1 for more details.

4 Empirical methods

The objective of this analysis is to identify the causal effect of computer-aided math
tutorials on student-level proficiency in mathematics. However, identifying the causal
effect of tutorial participation is confounded when individuals self-select into the
tutorial program on the basis of unobserved characteristics that are also correlated
with math proficiency (i.e., a failure of the conditional independence assumption). A
popular approach to dealing with this difficulty is to rely on an instrumental variable
(IV) to isolate the exogenous variation in program participation. However, given the
limitations of the dataset (as discussed above), there are no valid exclusion restrictions
that can be relied on. Given these difficulties, we employ two different estimators
to mitigate the impact of endogenous selection when valid exclusion restrictions are
unavailable: the first is the nonparametric bounds approach of Kreider et al. (2012),
and the second is the minimum biased approach proposed by Millimet and Tchernis
(2013).6

4.1 Nonparametric bounds estimator

The nonparametric bounds approach of Kreider et al. (2012) requires weaker assump-
tions relative to other estimators employed to identify the average treatment effect
(ATE) of program participation in the presence of endogenous selection. As such,
the estimator yields sharp bounds on the ATE rather than point estimates. However,
the bounds can still be informative given various assumptions governing the selection
process.

Since our outcome of proficient versus non-proficient in mathematics is binary in
nature, we follow closely to Kreider et al. (2012) and define the ATE as

ATE (0, 1|X ∈ Ω) = P(MP(1) = 1|X ∈ Ω)

− P(MP(0) = 1|X ∈ Ω), (1)

where MP is realized math proficiency, MP(1) represents the math proficiency of a
student if they participated in the math tutorial,MP(0) represents the math proficiency
of that same student had they not participated in the math tutorial, and X ∈ Ω are

6 In applying the two methods, we use the Stata command -tebounds- for the nonparametric bounds
approach of Kreider et al. (2012) and the Stata command -bmte- for the minimum biased estimator of
Millimet and Tchernis (2013). See McCarthy et al. (2014) and McCarthy et al. (2015) for further details on
the Stata commands.
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observable characteristics with values in the setΩ .7 Intuitively, then, the ATE captures
the average difference in math proficiency rates between those who participated in the
math tutorial relative to those who did not.

As alluded to earlier, subjects were not randomly assigned into the tutorial (treat-
ment) versus non-tutorial (control) groups. In absence of true randomization between
the control and treatment groups, relying on the potential outcomeMP(1) as the coun-
terfactual for all students who did not participate in the tutorial program, and relying on
the potential outcomeMP(0) as the counterfactual for all students who did participate
in the tutorial program, will lead to incorrect estimates of the ATE given the endoge-
nous selection. To better understand this, and relying on the law of total probability,
we can rewrite (1) as

P[MP(1) = 1] = P[MP(1) = 1|T ∗ = 1]P(T ∗ = 1)

+ P[MP(1) = 1|T ∗ = 0]P(T ∗ = 0), (2)

where T ∗ = 1 for students who actually registered a positive amount of time in
the math tutorial and T ∗ = 0 for students who spend zero amount of time in the
tutorial. Since actual tutorial participation is observed, the sampling process identifies
the probability of selecting into the treatment group, P(T ∗ = 1), the probability of
selecting into the control group, P(T ∗ = 0), and the expected value of outcomes
conditional of the outcome being observed, P(MP = 1|T ∗ = 1). However, since
we only observe one state of the world for each individual in the dataset, i.e., the
sampling process does not shed light on P[MP(1) = 1|T ∗ = 0], we cannot point
identify P[MP(1) = 1] solely on the basis of the sampling process.

4.1.1 Exogenous selection

As a benchmark, we start by considering the naïve case of assuming exogenous selec-
tion. The assumption of exogenous selection can be expressed by

P[MP(1) = 1|T ∗] = P[MP(1) = 1],

where conditioning on observables in X is still implied. Further, given (2) we can
write

P[MP(1) = 1] = P[MP = 1|T ∗ = 1]
P[MP(0) = 1] = P[MP = 1|T ∗ = 0].

As such, the ATE can be expressed as

ATE = P[MP(1) = 1] − P[MP(0) = 1]
= P[MP = 1|T ∗ = 1] − P[MP = 1|T ∗ = 0], (3)

7 Like Kreider et al. (2012), we drop X ∈ Ω going forward for notational simplicity.
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which can be identified by the sampling process under the assumption that individuals
were correctly classified into the control and treatment groups.8

4.1.2 No assumption on selection

We next consider the case of imposing no assumption on selection. Given the absence
of any assumption governing the selection process, and under the assumption of no
measurement error, the estimator yields the worst-case bounds (Manski 1995; Pepper
2000). With respect to the missing counterfactuals, the only thing we know is that they
must lie within the unit interval since they represent latent probabilities. As such the
lower and upper bounds on P[MP(1) = 1] and P[MP(0) = 1] can be identified by

P[MP = 1, T ∗ = 1] ≤ P[MP(1) = 1] ≤ P[MP = 1, T ∗ = 1] + P(T ∗ = 0)

and

P[MP = 1, T ∗ = 0] ≤ P[MP(0) = 1] ≤ P[MP = 1, T ∗ = 0] + P(T ∗ = 1),

respectively. The upper and lower bounds on the ATE can then be compactly repre-
sented by

BU
ATE = BU

P[MP(1)=1] − BL
P[MP(0)=1] (4)

and
BL
ATE = BL

P[MP(1)=1] − BU
P[MP(0)=1], (5)

where BU and BL are the upper and lower bounds, respectively.
Note, the bounds under the worst-case scenario always include zero. As such, it

is impossible to know whether or not participation in the tutorial program actually
helped improve mean levels of proficiency in mathematics. In other words, we cannot
sign the ATE under this scenario. However, as noted inMillimet and Roy (2015), some
insight may be gleaned from the results since extreme values are excluded from the
bounds.

4.1.3 Monotonicity assumptions

The bounds represented by (4) and (5) require no assumptions with respect to how
students select into the tutorial program. As such, it is not possible to exclude zero
from the bounds. In order to tighten the bounds on the ATE relative to the worst-case
scenario, we make various monotonicity assumptions with respect to the relationship
between proficiency in mathematics, participation in the tutorial program, and the
underlying data. Specifically we consider the monotone treatment selection (MTS)
assumption, the monotone instrumental variable (MIV) assumption, and, lastly, the

8 Given the nature of the computerized tutorial, we precisely knowwho participated in the tutorial program
since actual time spent in the program is digitally recorded. Thus, unlike Kreider et al. (2012) and Millimet
and Roy (2015) who rely on self-reported participation, we do not allow for misclassification errors.
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monotone treatment response (MTR) assumption (Manski 1997; Manski and Pepper
2000).

Monotone treatment selection The MTS assumption formalizes the idea that stu-
dents who participate in the computer-aided tutorial have, on average, better potential
outcomes than those who do not participate in the tutorial. In addition to evidence of
students positively selecting into tutoring programs (Gurun and Millimet 2008), this
assumption conforms with intuition in that those students who stand to benefit the
most from the program would be the ones actually selecting into the tutorial on the
basis of these unobserved gains.

Following Kreider et al. (2012) and McCarthy et al. (2014), this assumption can be
represented notationally as

P[MP( j) = 1|T ∗ = 1] ≥ P[MP( j) = 1|T ∗ = 0] (6)

for j = 0, 1 and where MP( j)= 1 represents better outcomes with respect to profi-
ciency in mathematics. By imposing the MTS assumptions in (6), the bounds on the
ATE are given by

BU
ATE = P[MP = 1, T ∗ = 1]

P(T ∗ = 1)
− P[MP = 1, T ∗ = 0]

P(T ∗ = 0)
(7)

and

BL
ATE = P[MP = 1, T ∗ = 1] − {P[MP = 1, T ∗ = 0] + P(T ∗ = 1)}. (8)

Monotone instrumental variable A further assumption to tighten the bounds exploits
information through the use of a MIV. Unlike a traditional instrumental variable with
mean independence, the MIV only requires a weakly monotone positive relationship
between the instrumental variable, ν, and the potential outcomes (Manski and Pepper
2000). In other words, higher values of ν are, on average, associated with better
potential outcomes. Notationally,

P[MP( j) = 1|ν = η1] ≤ P[MP( j) = 1|ν = η] ≤ P[MP( j) = 1|ν = η2],

where η1 < η < η2 and j = 0, 1.
The MIV utilized in the analysis is a composite measure constructed from multiple

binary indicators. To construct the MIV index, we follow Kling et al. (2007) and take
an equal weighted average of individual z-scores where the z-scores are constructed
using binary indicators for students that are proficient in English, white, and male. The
choice of variables used to construct the index stems from the literature demonstrating
a positive achievement gradient between mathematics and each of these measures
(Hedges and Nowell 1995; Leahey and Guo 2001; Fryer and Levitt 2004, 2006, 2010;
Hemphill and Vanneman 2011; Sohn 2012).

123



www.manaraa.com

The impact of computer-based tutorials on high... 1051

Combining the MTS and MIV assumptions (MTS–MIV) yields

sup
η1≤η

BL(η1) ≤ P[MP( j) = 1|ν = η] ≤ inf
η≤η2

BU (η2), (9)

where BU and BL are again the upper and lower bounds, respectively, and j = 0, 1.9

As outlined in McCarthy et al. (2014), to obtain final bounds on the ATE the sample is
first split into k number of cells. The MTS bounds are then calculated for P[MP( j) =
1], j = 0, 1, over the k cells resulting in BU

k and BL
k , k = 1, . . . , K . Weighted

averages of BU and BL are calculated across the k cells resulting in joint MTS–MIV
bounds. Final bounds on the ATE are then derived using (4) and (5).

Monotone treatment response The last assumption imposed to tighten the bounds on
theATE is theMTRassumption,which requiresmathproficiency to be amonotonically
increasing function in the treatment. In otherwords, the computer-aided tutorial cannot
have a negative impact on the probability of being proficient in math.10 While the
argument that in class computer-aided learning may crowd out a student’s time for
traditional learning and hence lead to worse performance in math, the unique nature
of the dataset requiring out of classroom time in the tutorial mitigates this concern.
This is particularly true if one assumes that participating in the tutorial is at least as
effective as any other tutoring/instructional methods available to students outside of
the classroom. Essentially, given positive selection into the tutorial, combining the
MTS and MTR (MTS–MTR) assumptions implies that the lower bound on the ATE
becomes zero and the upper bound on the ATE is again expressed by (7).11

4.2 Minimum biased estimator

Unlike the bounding approach of Kreider et al. (2012), the minimum biased estimator
(MB) of Millimet and Tchernis (2013) yields a point estimate. The MB estimator
is an extension of the normalized inverse probability weighted (IPW) estimator of
Hirano and Imbens (2001), which provides an unbiased estimate of the ATE when the
conditional independence assumption holds. To minimize the bias stemming from the
model being under-specified, the MB estimator trims the sample to only include those
observations in some neighborhood around the biased minimizing propensity score,
P∗.

9 See Proposition 1 in Manski and Pepper (2000).
10 Steenbergen-Hu and Cooper (2013) review 26 different reports on intelligent tutoring systems spanning
1997 to 2010 and find that tutoring had at worse a nonnegative impact on achievement outcomes.
11 As noted inMcCarthy et al. (2015), combining theMTR assumption with theMTS–MIV assumptions is
slightly more complicated since P[MP( j) = 1], j = 0, 1 are bounded separately within each of the k cells.
Since the MTR assumption requires that tutorial participation have no negative impact on the probability
of being proficient in math, then it must be the case that BL

k of P[MP(1) = 1] must be strictly less than

BU
k of P[MP(0) = 1] ∀ k = 1, . . . , K .

123



www.manaraa.com

1052 I. K. McDonough, C. I. Tra

As proposed in Millimet and Tchernis (2013), the MB estimator can be expressed
as

ATE
[
P∗]=

[
∑

i∈Ω

MPiTi

P̂(Xi )

/ ∑

i∈Ω

Ti

P̂(Xi )

]

−
[
∑

i∈Ω

MPi (1−Ti )

1− P̂(Xi )

/ ∑

i∈Ω

(1 − Ti )

1 − P̂(Xi )

]

,

(10)

where Ω is the subset of high school students with estimated propensity scores in
some neighborhood around P∗, MP is still an indicator for math proficiency, T is
again a treatment indicator, and X is the set of covariates summarized in Table 1,
including gender interacted with race. Implementing the estimator empirically, we
utilize a radius around P∗, θ, of 0.05 and 0.25. For example, θ = 0.05 corresponds to
5% of both the control and treatment groups being contained inΩ . Thus, an increasing
value of θ increases the efficiency of the estimator at the expense of increasing the
bias. The opposite holds true for decreasing values of θ . Note, the interpretation of the
estimated MB treatment effects needs to be done so carefully since the estimators are
only utilizing observations around P∗. Although trimming the data minimizes the bias
stemming from the unconfoundedness assumption failing, it does so at the expense of
altering the interpretation of the parameter being estimated.

Lastly, Millimet and Tchernis (2013) further derive MB estimators for the ATE
while relaxing the assumption of joint normality between the errors in the potential
outcomes equations and in the treatment equation. As such, they present Edgeworth
expansion (EE) versions of the estimators following Lee (1984). Given the simulation
results presented in Millimet and Tchernis (2013), our preferred MB estimators are
guided by whether or not the errors in the treatment equation are homoskedastic
or heteroskedastic. Specifically, if the errors are homoskedastic, we report the EE
versions of MB estimators for the ATE, and if the errors are heteroskedastic, we report
the non-EE version of the MB estimator for the ATE.12

5 Results

In this section we present our results for the nonparametric bounds estimator and
the MB estimator. We employ both estimators utilizing the full sample, as well as
various subsamples. Specifically,we estimate each separately formale students, female
students, minority (black or hispanic) students, and white students. Lastly, we discuss
the results putting the estimates into more tangible measures.

5.1 Nonparametric bounds results

The results for the full sample and subsequent subsamples are given in Tables 2, 3, 4,
5, and 6. To reiterate, the treatment group is defined as those students who spent any

12 Likelihood ratio tests for heteroskedasticity were conducted, and results are available upon request.
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Table 2 Sharp bounds on the ATE of math tutorial participation on math proficiency: full sample

Assumption Estimated bounds 95% Confidence interval

Exogenous selection [0.048, 0.048] [0.007, 0.087]

No assumption on selection [−0.508, 0.492] [−0.517, 0.498]

MTS [−0.508, 0.048] [−0.517, 0.087]

MTS–MIV [−0.508, 0.046] [−0.517, 0.083]

MTS–MIV–MTR [0.000, 0.046] [0.000, 0.083]

Treatment is defined as spending any positive amount of time in the tutorial module; confidence inter-
vals around the ATE are obtained following Imbens and Manski (2004) with 100 bootstrap repetitions;
N= 16, 219; see text for further details

Table 3 Sharp bounds on the ATE of math tutorial participation on math proficiency: males

Assumption Estimated bounds 95% Confidence interval

Exogenous selection [0.058, 0.058] [0.014, 0.117]

No assumption on selection [−0.545, 0.455] [−0.554, 0.465]

MTS [−0.545, 0.058] [−0.554, 0.117]

MTS–MIV [−0.545, 0.048] [−0.554, 0.097]

MTS–MIV–MTR [0.000, 0.048] [0.000, 0.097]

Treatment is defined as spending any positive amount of time in the tutorial module; confidence intervals
around theATE are obtained following Imbens andManski (2004)with 100 bootstrap repetitions;N= 7860;
see text for further details

Table 4 Sharp bounds on the ATE of math tutorial participation on math proficiency: females

Assumption Estimated bounds 95% Confidence interval

Exogenous selection [0.055, 0.055] [0.009, 0.093]

No assumption on selection [−0.474, 0.526] [−0.485, 0.537]

MTS [−0.474, 0.055] [−0.485, 0.093]

MTS–MIV [−0.474, 0.055] [−0.485, 0.093]

MTS–MIV–MTR [0.000, 0.055] [0.000, 0.093]

Treatment is defined as spending any positive amount of time in the tutorial module; confidence intervals
around theATE are obtained following Imbens andManski (2004)with 100 bootstrap repetitions;N= 8359;
see text for further details

positive amount of time in the tutorial program, and the control group is comprised of
all other students who registered zero hours in the tutorial program.

Focusing on the results, three things become immediately apparent. First, in all
cases, except for the subsample of white students, the point estimates under the
assumption of exogenous selection are positive in magnitude and statistically sig-
nificant. Under exogenous selection, minorities appear to get the most out of tutorial
participation with a point estimate of 0.101. Or in other words, participation in the
tutorial is associated with an average increase in the likelihood of being proficient
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Table 5 Sharp bounds on the ATE of math tutorial participation on math proficiency: minorities

Assumption Estimated bounds 95% Confidence interval

Exogenous selection [0.101, 0.101] [0.054, 0.145]

No assumption on selection [−0.351, 0.649] [−0.364, 0.660]

MTS [−0.351, 0.101] [−0.364, 0.145]

MTS–MIV [−0.349, 0.101] [−0.359, 0.145]

MTS–MIV–MTR [0.000, 0.101] [0.000, 0.145]

Treatment is defined as spending any positive amount of time in the tutorial module; confidence intervals
around the ATE are obtained following Imbens andManski (2004) with 100 bootstrap repetitions; Minority
students defined as either black or hispanic; N = 7766;Nb = 2257;Nh = 5509; see text for further details

Table 6 Sharp bounds on the ATE of math tutorial participation on math proficiency: whites

Assumption Estimated bounds 95% Confidence interval

Exogenous selection [−0.027, −0.027] [−0.075, 0.018]

No assumption on selection [−0.667, 0.333] [−0.678, 0.347]

MTS [−0.667, −0.027] [−0.678, 0.018]

MTS–MIV [−0.665, −0.027] [−0.677, 0.018]

MTS–MIV–MTR [0.000, −0.027] [0.000, 0.018]

Treatment is defined as spending any positive amount of time in the tutorial module; confidence inter-
vals around the ATE are obtained following Imbens and Manski (2004) with 100 bootstrap repetitions;
Nw = 6581; see text for further details

on the state mathematics exam by 10.1 percentage points. The ATE under exogenous
selection for females and males is 0.055 and 0.058, respectively.

Second, the monotonicity assumptions drastically tighten the upper bounds relative
to the worst-case bounds (no assumption on selection). And third, in all cases we are
unable to rule out negative effects from tutorial participation when relying simply on
the joint MTS–MIV assumption. It is only when we invoke the MTR assumption that
we are able to rule out negative effects.

Specifically focusing on the full sample, the assumption of positive selection
reduces the bounds on the ATE from [−0.508, 0.492] to [−0.508, 0.048]. Utiliz-
ing our composite MIV further reduces the upper bound, albeit very negligibly, and
as alluded to previously, we are unable to rule out negative effects. However, the
joint MTS–MIV–MTR assumption further reduces the bounds to [0.000, 0.046] with
a corresponding Imbens and Manski (2004) confidence interval of [0.000, 0.083].13

Looking at males and females individually, the same patterns emerge. For males,
the assumption on selection decreases the worst-case bounds from [−0.545, 0.455] to
[−0.545, 0.058]. The joint MTS–MIV bounds are further reduced to [−0.545, 0.048].
As with the full sample, we are only able to rule out negative impacts from tutorial
participation by imposing the MTR assumption. The joint MTS–MIV–MTR bounds

13 All Imbens and Manski (2004) confidence intervals reported are at the 95% level.
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are further reduced to [0.000, 0.048] with an Imbens and Manski (2004) confidence
interval of [0.000, 0.097].

The results for females are very similar to the results for males. In particular,
the assumption on selection reduces the worst-case bounds from [−0.474, 0.526] to
[−0.474, 0.055]. However, unlike with males, imposing the joint MTS–MIV assump-
tion does nothing to further reduce the bounds. The only way the bounds are tightened
further is via the MTR assumption. Specifically, the joint MTS–MIV–MTR bounds
are further reduced to [0.000, 0.055] with an Imbens and Manski (2004) confidence
interval of [0.000, 0.093].

Turning to the results for minority and white students, we primarily focus on the
results for minority students since the results for whites are statistically insignificant
when imposing the joint MTS–MIV–MTR assumption. Specifically, the joint MTS–
MIV–MTR bounds for white students are [0.000, −0.027] with an associated Imbens
and Manski (2004) confidence interval of [0.000, 0.018]. For minority students, the
pattern in the resulting bounds follows similarly to what has been described above
for the full sample, males, and females. In particular, the assumption on selection
significantly tightens the upper bound on theworst-case bounds. However, introducing
an MIV does nothing to further reduce the upper bound, but immaterially tightens up
the lower bound. Specifically, the joint MTS–MIV assumptions tighten the worst-
case bounds from [−0.351, 0.649] to [−0.349, 0.101]. Further imposing the MTR
assumption jointly with the MTS–MIV assumption further reduces the bounds to
[0.000, 0.101] with a derived Imbens andManski (2004) confidence interval of [0.000,
0.145].

In summary, using the partial identification approachofKreider et al. (2012),wefind
evidence of an association between student participation in the computer-aided tutorial
and passing as proficient the HSPE inmathematics. Although we are unable to rule out
a zero average treatment effect,we are able to rule out very sizable effects.Additionally,
we find no statistically relevant impact for white students. As a word of caution, these
results hinge on the credibility of the underlying assumptions, especially the MTR
assumption. Although the MTR assumption is admittedly a very strong one, there
is ample evidence in the literature suggesting that participation in technology-related
tutorial programs can, atworse, have no impact on student performance (Steenbergen-
Hu and Cooper 2013).

5.2 Minimum biased results

The results for the full sample and subsequent subsamples are given in Table 7. The
control and treatment groups are still defined as above. Unlike the results presented
earlier, here we obtain a point estimate as opposed to upper and lower bounds. For
comparison, we report the MB estimates along side the OLS and IPW estimates.14

95% empirical confidence intervals are also reported.

14 The covariates utilized in each model are indicators for minority status, gender, English proficient,
refugee status, gifted and talented, and for being in the tenth grade. Note, the exogenous selection results
presented in the previous section correspond to OLS when regressing math proficiency on only a treatment
indicator.
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Looking at the results for the ATE, the main points that become apparent are similar
to those associated with estimated bounds. First, there is a positive and statistically
significant impact of participation in the math tutorial, with the exception of the point
estimates for males when θ = 0.05 and for white students. Second, the point estimates
for the ATE stemming from the MB estimator are lower than those from OLS, which
conforms with the idea of positive selection into the tutorial on unobserved gains.
Note, because of the bias/efficiency trade-off associated with θ (i.e., as θ gets larger,
there is a trade-off for more bias for greater efficiency), our preferred results discussed
here are those associated with θ = 0.05. However, the results for θ = 0.25 are given in
Table 7. Lastly, all results need to be interpreted cautiously with respect to the biased
minimizing propensity score, P∗.

Focusing on the full sample, the estimated ATE for participating in the tutorial
is 0.078 (P∗ = 0.128). Said another way, conditional on having a relatively mid
to high rank in the estimated propensity score distribution of program engagement,
participation in the tutorial is associated with an average increase of 7.8 percentage
points in the likelihood that the average high school student passes the state high school
mathematics exam (the median estimated propensity score is 0.047). This is less than
the estimated ATE of 0.108 using both the OLS and IPW estimators.

Looking at males and females individually, the estimated ATE associated with pro-
gram participation is 0.095 (P∗ = 0.065) and 0.084 (P∗ = 0.139) for males and
females, respectively. As noted earlier, the estimated ATE for males is not statistically
significant when θ = 0.05 . However, at θ = 0.25 the estimated ATE for males is
again 0.095, but is nowmarginally statistically significant at the 95% confidence level.
The estimated impact of tutorial participation for the average female is statistically
significant at θ = 0.05. For males, then, conditional on having a relatively mid to high
rank in the estimated propensity score distribution of tutorial participation, participat-
ing in the tutorial is associated with a 9.5 percentage point increase in the likelihood
of passing the HSPE in mathematics (the median estimated propensity score is 0.035).
For females, again conditional on having a relatively mid to high rank in the estimated
propensity score distribution of tutorial participation, participating in the tutorial is
associated with a 8.4 percentage point increase in the probability of being classified
as proficient on the HSPE in mathematics (the median estimated propensity score for
females is 0.059).

Focusing on the results for minority and white students, it becomes immediately
clear that the estimated ATE for white students is not statistically significant at either
θ = 0.05 or θ = 0.25. This result is not surprising given the results from the estimated
bounds presented above. However, for minority students we do find a positive and
statistically significant association between participating in the tutorial and passing
the HSPE in mathematics. Specifically, conditional on having a relatively high rank
in the estimated propensity score distribution of tutorial participation, participating
in the tutorial is associated with a 9.4 percentage point increase in the probability of
being classified as proficient on the HSPE in mathematics (P∗ = 0.193; the median
estimated propensity score for minorities is 0.037).

To recap, implementing the MB estimator of Millimet and Tchernis (2013), we
find some evidence of a positive, causal relationship between student participation in
the computer-aided tutorial and passing as proficient on the high school state exam
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Table 8 Impact of math tutorial participation on math proficiency: bivariate probit sensitivity analysis

Correlation of disturbances

ρ = 0.00 ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20 ρ = 0.25

Full sample 0.328* 0.223* 0.117† 0.011 −0.096† −0.204*

(0.047) (0.047) (0.047) (0.047) (0.047) (0.046)

[0.106] [0.072] [0.038] [0.003] [−0.032] [−0.067]

Males 0.290* 0.181† 0.072 −0.039 −0.150† −0.261*

(0.076) (0.076) (0.076) (0.075) (0.075) (0.074)

[0.093] [0.059] [0.023] [−0.013] [−0.050] [−0.087]

Females 0.353* 0.249* 0.146† 0.042 −0.063 −0.167*

(0.061) (0.061) (0.060) (0.060) (0.060) (0.059)

[0.114] [0.081] [0.047] [0.014] [−0.020] [−0.054]

Minorities 0.445* 0.338* 0.232* 0.125‡ 0.018 −0.089

(0.069) (0.069) (0.069) (0.068) (0.068) (0.067)

[0.153] [0.116] [0.079] [0.042] [0.006] [−0.029]

Whites 0.187† 0.082 −0.024 −0.130‡ −0.238* −0.347*

(0.075) (0.075) (0.075) (0.075) (0.074) (0.074)

[0.057] [0.026] [−0.008] [−0.042] [−0.078] [−0.116]

Degree of selection on unobservables defined by ρ; robust standard errors in parentheses; average partial
effects in brackets; for a list of covariates used, see Table 1
∗ p < 0.01
† p < 0.05
‡ p < 0.10

in mathematics. To reiterate, one needs to be cautious when interpreting these results
since the sample (subsamples) is (are) trimmed to only include students around the
bias minimizing propensity score.

5.3 Sensitivity analysis

To assess the sensitivity of our results to selection on unobservables, we followAltonji
et al. (2005) and estimate a bivariate probit model varying the degree of selection on
unobservables. In particular, we estimate

T = I(X ′β + υ > 0)

MP = I(X ′γ + αT + ε > 0), (11)

where T is again equal to one for students who participate in the tutorial,MP is again
equal to one for students who test proficient in mathematics, X is the same set of
covariates as earlier, and [

υ

ε

]
∼ N

([
0
0

]
,

[
1 ρ

ρ 1

])
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while constraining ρ to particular values. Specifically, we vary ρ from 0 to 0.25 in
increments of 0.05. When ρ = 0 there is no selection on unobservables; however,
each subsequent iteration through values of ρ > 0 allows for more positive selection
into the treatment on the basis of unobservable factors. We report both the probit
coefficients and average partial effects on mathematics proficiency probabilities in
Table 8.

What becomes immediately apparentwhen looking at the results is that the impact of
tutorial participation on the probability of passing as proficient in mathematics is very
sensitive to selection on unobservables.Across the full sample and various subsamples,
even just amoderate amount of selection on unobservables can erase away any positive
impacts resulting from tutorial participation. For the full sample, when ρ = 0, the
impact on the margin for tutorial participation is 0.106. However, when ρ = 0.15 the
estimated impacts are no longer statistically significant at conventional levels. When
ρ is increased to 0.20, the estimated coefficient turns negative with a value of −0.096
and is again statistically significant at conventional levels. A very similar pattern
emerges when looking at the results for the various subsamples. With the exception of
minorities, the average partial effect becomes negative and/or statistically insignificant
at conventional levels when ρ = 0.15. For minorities, statistical significance is lost
when ρ = 0.20. Again, detailed results are given in Table 8.

5.4 Discussion

By imposing restrictions on how students self-select into the math tutorial program
and by trimming the sample to obtain minimum biased point estimates, the results
presented here provide some evidence that participation in computerized math tutori-
als increases the likelihood of testing as proficient in high school math. However, the
results need to be interpreted cautiously since we are unable to rule out a zero lower
bound on the ATE estimates. Overall, the results lend some support for the limited evi-
dence that finds a positive impact of computer-aided learning programs implemented
outside of regular school hours (Lai et al. 2015).

In framing the results in more intuitive terms, we focus on the ATE and rely on
the bounding estimator of Kreider et al. (2012) since these bounds, relative to the
MB point estimates, provide more conservative estimates for the impact that tutorial
participation has on the average high school student’s proficiency in mathematics.
In particular, using the estimated upper bound for the full sample under the joint
MTS–MIV–MTR assumption, and assuming the impacts are causal, if every student
participated in the tutorial, then the overall math proficiency rate in the sample could
potentially increase from52 to 54% (or an additional 343 students in the samplewould,
on average, pass the HSPE in math).

The impacts are even greaterwhen simply looking atminority students. Specifically,
if every minority student were to participate in the tutorial, and again assuming the
impacts from tutorial participation are causal, the math proficiency rate for minorities
in the sample could potentially increase from 34 to 41% (or an additional 490 minority
students would, on average, pass the HSPE in math).
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The impacts for males and females individually fall between the impacts presented
above for the full sample andminority subsample. Specifically, formales, participation
in the tutorial has the potential of increasing the math proficiency rate for males in the
sample from 55 to 58% (or an additional 161 male students would, on average, pass
the HSPE in math). If every female were to participate in the tutorial, then proficiency
rates for this subsample could potentially increase from 48 to 54% (or an additional
196 female students would, on average, pass the HSPE in math).

Referring back to the results for the full sample, and using an estimated cost of $5.00
per tutorial license paid by CCSD, we can provide a back-of-the-envelope calculation
for the per additional proficient student cost of the tutorial program.15 Relying on the
upper bound on the ATE for the full sample, and again assuming that the impacts
are in fact causal, the estimated cost to achieve an additional 343 proficient students
in mathematics is approximately $236 per student. Recent figures suggest that high
school graduates make 33% more in lifetime earnings relative to someone with no
high school diploma (or roughly $9000 less per year) (Carnevale et al. 2011). As
such, and assuming that not passing the HSPE is what keeps a non-proficient student
from graduating high school, the cost of $236 per additional proficient student seems
inconsequential compared to the potential benefits accrued over the life cycle. Again
as a word of caution, these impacts are obtained using the upper bounds on the ATE
stemming from participation in the math tutorial. So in essence, under theMTS–MIV–
MTR assumption, the impacts can range anywhere from zero to the figures reported
above.

As a final note, if we were to perform the same exercise using the MB point esti-
mates, the potential impacts would only be larger. This, of course, is conditional on
the MB results being generalizable across the entire propensity score distribution of
tutorial participation. However, given the results from the sensitivity analysis, even
just a modest amount of selection on unobservables can explain any positive impact
stemming from tutorial participation.

6 Conclusion

In this paper we present results on the impact of computer-aided tutorials on math
proficiency rates when the tutorial utilized is a complement to traditional classroom
instruction in that the computer-aided tutorial is implemented outside of normal school
hours.We use data on students from theClarkCounty SchoolDistrict inNevada during
the 2006/2007 school year and match up tutorial participation with corresponding test
scores on the state proficiency exam. Our choice of estimators is guided by the inher-
ent, and arguably severe, limitations of the dataset. Given the limited set of relevant
covariates as it relates to achievement in mathematics, the conditional independence
assumption surely fails. Identifying the impact of tutorial participation on proficiency
in mathematics is further confounded by not having access to valid exclusion restric-

15 The cost of $5.00 per license comes from conversations with individuals at CCSD who recall the
program during the 2006/2007 school year. The numbers provided to us were in the range of $4.00 to $5.00
per license. We opt to use the more aggressive $5.00 per license to construct an upper bound on the cost
per additional proficient student.
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tions. As such, we employ the partial identification methods of Kreider et al. (2012)
and the minimum biased estimator of Millimet and Tchernis (2013).

Overall our results provide some evidence that tutorial participation increases math
proficiency for the average high school student. This is particularly true given our MB
estimates. However, we are unable to rule out a zero average treatment effect using the
partial identification approach of Kreider et al. (2012). Further, any positive impact
stemming from tutorial participation appears to be highly sensitive to selection on
unobservables. Taken together, the results presented here provide some, although lim-
ited, support for the small literature on computer-aided learning implemented outside
of traditional school hours providing a positive impact on achievement in mathematics
(Lai et al. 2015). Given the benefits of mathematical proficiency documented in the
economics and education literature, policymakers and school districts alikemay find it
beneficial, and possibly cost effective, to combat low proficiency rates in mathematics
by implementing computer-aided tutorials as a complement to traditional classroom
instruction.
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